Finding and Employing Data Science Tools

Python for Data Science for Dummies introduces you to a number of common libraries used for data science experimentation and discovery. Most of these libraries also figure prominently as part of a data scientist’s toolbox because they provide common functionality needed for every application. It is a great idea for those who are interested in expanding their knowledge in data science and how it can be applied to the field of Artificial Intelligence (AI). You can learn more about some of the basic principles such as applying, developing, leveraging and creating data science projects. However, these libraries are only the tip of the data science toolbox. Because data science is such a new technology, you can find all sorts of tools to perform a wide range of tasks, but there is little standardization and some of these tools are hard to categorize so that you know where they fit within your toolbox. That’s why I was excited to see, The data science ecosystem, the first of a three part series of articles that describe some of the tools available for use in data science projects. If you are interested in finding out more about data science, you might want to check out this data science bootcamp for more information. You can also find the other two parts of the article at:

The problem for people who want to explore data science and machine learning today might not be the lack of tools, but the lack of creativity in using them. In order to explore data science, it’s important to understand that the tools only work when your prepare the data properly, employ the correct algorithm, and define reasonable goals. So for those that are looking for suitable tools and aid when looking to start experimenting with data science or machine learning processes they might look to collaborate with other data scientists using this open-source dvc data science platform or one similar that can integrate many other data science tools. No matter how hard you try, data science and machine learning can’t provide you with the correct numeric sequences for the next five lottery wins. However, data science can help you locate potential sources of fraud in an organization. The article, Machine learning and the strategic snake oil reserve, sums up what may be the biggest problem with data science today-people expect miracles without putting in the required work. Fortunately, there are new tools on the horizon to make languages, such as Python, and products, such as Hadoop, easier for even the less creative mind to use (see Python and Hadoop project puts data scientists first).

Even with a great imagination, the tools available today may not do the job you want as well as they should because the underlying hardware isn’t capable of performing the required tasks. The process is further hampered by a misuse of the skills that data scientists provide (see You’re hiring the wrong data scientists for details). As a result, you need a large number of specialized tools in order to perform tasks that shouldn’t require them. However, that’s the reason why you need to know about the availability of these tools so that you can produce useful results on today’s hardware with a minimum of fuss. Asking the question, “How would Alan Turing fix A.I.?” helps you understand the complexities of the data science and machine learning environments.

Data science, machine learning, data scientists with even greater skills, and better hardware will keep the momentum going well into the future. As the Internet of Things (IoT) continues to move forward and the problem of what to do with all that data becomes even larger, data science will take on a larger role in everyone’s daily life. Count on reading more articles like, Google a step closer to developing machines with human-like intelligence, that describe the proliferation of new hardware and new tools to make the full potential of data science and machine learning a reality. In the meantime, getting the tools you need and exploring the ways in which you can creatively use data science to solve problems is the best way to go for now. Let me know your thoughts on the future of data science at [email protected].

Missing Python for Data Science for Dummies Companion Files

For all those long suffering readers who have been missing the companion files for Python for Data Science for Dummies, they’re finally available at http://www.dummies.com/store/product/Python-for-Data-Science-For-Dummies.productCd-1118844181,descCd-DOWNLOAD.html. All you need to do is click the Click to Download link on the page. I’m truly sorry you needed to wait so long. Thank you to everyone who noticed the missing files and also the incorrect link in the book, which now appears in the book errata. Please let me know if you have any problems locating the files or downloading them at [email protected].

 

Getting Your Python for Data Science for Dummies Extras

The process of discovering how to use Python to perform data science tasks begins when you get your copy of Python for Data Science for Dummies. Luca and I spent a good deal of time making your data science learning experience easier and even fun. However, it only starts there. Like many of my other books, you can also find online content for Python for Data Science for Dummies in these forms:

I always want to hear your questions about my books. Be sure to write me about them at [email protected]. In the meantime, I hope you enjoy your Python for Data Science for Dummies reading experience. Thank you for your continued support.


20 July 2015: Updated to show correct link for the companion files.

 

Beta Readers Needed for Python for Data Science for Dummies

According to just understanding data, a data science consultancy, “data science lies at the intersection between statistics, programming and hacking.” And many businesses can take advantage of data science because it can help them identify patterns that you can use to improve your business’s operations. But, what exactly is it?

Data science is the act of extracting knowledge from data. This may seem like a foreign concept at first, but you use data science all the time in your daily life. When you see a pattern a sequence of numbers, your mind has actually used data science to perform the task. What data science does is quantify what you do normally and make it possible to apply the knowledge to all sorts of different technologies. For example, robots use data science to discover objects in their surroundings.

Of course, data science is used for all sorts of applications. For example, data science is used with big data to perform tasks such as data mining or to predict trends based on various data sources. The fact that your browser predicts what you might buy based on previous purchases rests on data science. Even your doctor relies on data science to predict the outcome of a certain series of medications on an illness you might have.

Even though data science first appears easy to categorize, it’s actually huge and quite difficult to pin down. It relies on the inputs of three disciplines: computer science, mathematics, and statistics. There are all sorts of sub-disciplines used as well. Because of the depth and width of knowledge required, a data scientist often works as part of a team to tease out the meanings behind the data provided to solve a problem.

Python for Data Science for Dummies provides you with a beginning view of data science through the computer science discipline using a specific language, Python. The capabilities of Python as a language make it a perfect choice for this book. While reading this book, you’ll see these topics explained:

  • Part I: Getting Started with Data Science & Python
    • Chapter 1: Discovering the Match between Data Science and Python
    • Chapter 2: Introducing Python Capabilities and Wonders
    • Chapter 3: Setting Up Python for Data Science
    • Chapter 4: Reviewing Basic Python
  • Part II: Getting Your Hands Dirty with Data
    • Chapter 5: Working with Real Data
    • Chapter 6: Getting Your Data in Shape
    • Chapter 7: Shaping Data
    • Chapter 8: Putting What You Know in Action
  • Part III: Visualizing the Invisible (2 Pages)
    • Chapter 9: Getting a Crash Course in MatPlotLib
    • Chapter 10: Visualizing the Data
    • Chapter 11: Understanding Interactive Graphical and Computing Practice
  • Part IV: Wrangling Data
    • Chapter 12: Stretching Python’s Capabilities
    • Chapter 13: Exploring Data Analysis
    • Chapter 14: Reducing Dimensionality
    • Chapter 15: Clustering
    • Chapter 16: Detecting Outliers in Data
  • Part V: Learning from Data
    • Chapter 17: Exploring Four Simple and Effective Algorithms
    • Chapter 18: Performing Cross Validation, Selection and Optimization
    • Chapter 19: Increasing Complexity with Linear and Non-linear Tricks
    • Chapter 20: Understanding the Power of the Many
  • Part VI: Parts of Ten
    • Chapter 21: Ten Essential Data Resources
    • Chapter 22: Ten Data Challenges You Should Take

As you can see, this book is going to give you a good start in working with data science. Because of the subject matter, I really want to avoid making any errors in book, which is where you come into play. I’m looking for beta readers who use math, statistics, or computer science as part of their profession and think they might be able to benefit from the techniques that data science provides. As a beta reader, you get to see the material as Luca and I write it. Your comments will help us improve the text and make it easier to use.

In consideration of your time and effort, your name will appear in the Acknowledgements (unless you specifically request that we not provide it). You also get to read the book free of charge. Being a beta reader is both fun and educational. If you have any interest in reviewing this book, please contact me at [email protected] and will fill in all the details for you.