Choosing a First Language to Learn

My first programming experience (during the time of the dinosaurs) involved using a light panel to enter machine code into a rudimentary computer with 3 KB (yes, that’s KB) of RAM. The output was also in light form and I needed to decode the lights to determine if my code worked right. I worked with various systems in various ways over the next several years. By the time I got to college, the first language I learned there was BASIC (Beginner’s All-purpose Symbolic Instruction Code), then PC assembler, followed by Pascal. In fact, I’ve just stopped counting the number of languages I’ve learned over the years because each language has a place in my programmer’s toolbox. Of course, the question is what language you should learn first. I get asked that question quite often because there are a huge number of languages available today and no one wants to invest time in a language that’s going nowhere.

Part of the answer to the question of what to learn first is what you intend to do with the language. Each language has features that make it better at performing specific tasks. Programming languages can be split into those that are designed for a special purpose and those that are designed for a general purpose. A special purpose language, such as Structured Query Language (SQL), could be a good choice if you intend to move into database work immediately. However, for most people, a general purpose language works better because you can use it for a wider variety of tasks without bending yourself into a pretzel shape to do it.

A good place to start if you want to choose a language that’s popular enough to help you get a job afterward is the TIOBE index. It shows a listing of which languages are most popular today. As I’m writing this, Python is the most popular language on the list, but that could change tomorrow. Generally, any of the top ten languages on the list are good choices.

Of course, you want a programming language that is easy to learn. C/C++, C#, and Java are all complex languages with great flexibility. Furthermore, C/C++ and C# can help you work at a low level with the computer hardware. These languages have a steep learning curve and may not provide the best choices for a starting point. That said, if you have a line on a job that uses any of these languages, you could do worse than start here, just be prepared to burn the midnight oil learning.

The language I suggest people learn as a starting point is Python. In fact, Beginning Programming with Python For Dummies, 3rd Edition makes a point of showing you just how easy things can be. You don’t even need to invest in any special software, the book shows you how to use Google Colab so that you could conceivably learn how to program on your smartphone or TV. Others must agree with me because Python has turned into the language that the education industry turns to most often for budding programmers.

There are a lot of programming languages available today. You need to research the choice by taking into account what your personal needs are and what sort of job you want to get afterwards. You might find that something like JavaScript or Ruby will provide benefits that you can’t get with Python. Which language do you think will work best for you? Let me know your reasons at [email protected].

Machine Learning for Dummies, 2nd Edition, MovieLens Dataset

Updated March 15, 2023 to clarify the usage instructions.

The movies.dat file found in the Trudging through the MovieLens dataset section of Chapter 19 of Machine Learning for Dummies, 2nd Edition has been updated on the source site, so it no longer works with the downloadable source. Luca and I want to be sure you have a great learning experience. Fortunately, we do have a copy of the version of movies.dat found in the book. You can download the entire MovieLens dataset here:

To obtain your copy of the MoveLens dataset for your local Python setup, please follow these steps:

  1. Click the link or the Download button. The ml-1m.zip file will appear on your hard drive.
  2. Remove the files from the archive. You should see four files in a folder named ml-1m: movies.dat, ratings.dat, README, and users.dat.
  3. Place the files in the downloadable source directory for this book on your system.

Note that you may not be able to use automatic downloads with my site, which is a security measure on my part. In addition, it ensures that you get all of the MovieLens dataset files, including the README, which contains licensing, citation, and other information. This solution may not work well if you’re using an online IDE and I apologize in advance for the inconvenience. Please let me know if you have any other problems with this example at [email protected].

Supporting Creative People

This is an update of a post that originally appeared on March 28, 2016.

Authors get tired of hearing from the Information Wants To Be Free (IWTBF) crowd who thinks it’s terrible that they charge for their books. Somehow, authors and other creative people are supposed to exist by taking sustenance from the air. There is an interesting discussion of the topic at Should Information Be Free? in which the author says the information should be free from the perspective of everyone getting to use it, but that the people who write and print books should still get paid. Obviously, if I didn’t want to freely share information with others, I wouldn’t have created this blog and not charged for it. The point is, when someone steals Intellectual Property (IP), the person who created it isn’t being supported.

I work really hard to support my readers and so do many other authors. In fact, most creative people are in creative trades because they like to communicate with others using a variety of methods. The simplest goal is to provide something of intangible value to others—be it a painting, sculpture, dance, music, or writing. It’s well known that creative people are often underpaid (hence the cliché, starving artist). Because the starving artist (and most of them truly are starving) makes little money, it’s important that people do support them whenever possible. That’s why the piracy of IP is such a problem. IP theft has become a serious enough problem that we’re beginning to lose many good creative people simply because they no longer have enough money coming in to make a living.

The problem is that many people would support the creative people whose IP they use, but they don’t really understand that they need to pay for this material. For example, there are many sites online now that offer my books free of charge. Just viewing the site doesn’t provide a clue that anyone is stealing anything. These sites have a clean appearance and simply offer IP in the form of downloadable music, books, and so on. In fact, many of these sites are fully searchable. The reasons that someone would do something like this varies, but it pays to employ some critical thinking when you see something free that possibly looks a bit too good to be true. Many people download viruses, spyware, and other sorts of malware along with their free download. In the long run, it’s actually less expensive to buy the IP, than to have a computer compromised by some of the crud that comes with these free downloads.

For the record, my books are never free. You need to pay for your copy of my book in order to support the various things of value that I provide to you as a reader, including this free blog. It isn’t my goal to become rich—if that were my goal, I’d be in some other line of work (believe me when I say authors aren’t paid particularly well), but I do need to make enough to pay my expenses, just as you do. Even though I know many people do download my books free, I still support everyone that I can with good advice on how to get the most from the books I write. To me, coming in each day and working with all of you is one of the benefits of being an author. I truly do want people to use my books to get ahead in life. If you’d like to discuss the effects of piracy on you as a consumer of IP, please write me at [email protected].

Creating Sensible Error Trapping

This is an update of a post that originally appeared on May 23, 2011.

Errors in software happen. A file is missing on the hard drive or the user presses an unexpected key combination. There are errors of all shapes and sizes; expected and unexpected. The sources of errors are almost limitless. Some developers look at this vastness, become overwhelmed, and handle all errors the same way—by generating an ambiguous exception for absolutely every error that doesn’t help anyone solve anything. This is the worst case scenario that’s all too common in software today. I’ve talked with any number of people who have had to employ extreme effort just to figure the source of the exception out; many people simply give up and hope that someone has already discovered the source of the error.

At one time, error handling functionality in application development languages was so poor that it was possible to give the developer the benefit of a doubt. However, with the development tools that developers have at their disposal today, there is never a reason to provide an ambiguous “one size fits all” exception. For one thing, developers should make a distinction between the expected and the unexpected. Any expected error—a missing file for example—should be handled directly and specifically. If the application absolutely must have the file and can’t recreate it, then it should display a message saying which file is missing, where it is missing from, and possibly how to obtain another copy.

Even more than simply shoving the burden onto the user, however, modern applications have significantly more resources available for handling the error automatically. For example, it’s quite possible to use an Internet connection to access the vendor’s Web site and automatically download a missing application file. Except to tell the user what’s happening when the repair will take a few minutes, the application shouldn’t even bother the user with this particular kind of error—the repair should be automatic.

All of my essential programming books include at least mentions of error handling, debugging, exceptions, and other tasks associated with running code efficiently and smoothly. For example, Part IV of C++ All-In-One for Dummies, 4th Edition is devoted to the topic of debugging. Part V Chapter 3 of this same book talks about exceptions. If you’re a C# developer, C# 10.0 All-in-One for Dummies discusses exception handling in Book I Chapter 9. Book IV Chapter 2 discusses how to use the debugger to find errors. The point is that it’s essential to handle errors in your applications in a manner that makes sense to the users who rely on the application daily and the developers who maintain it.

Note that many of my newer books provide instructions for working with online IDEs, most especially Google Colab. These online IDEs rarely provide built-in debugging functionality, so then you need to resort to other means, such as those expressed in Debugging in Google Colab notebook.

Exceptional conditions do occur. However, even in these situations the developer must avoid the generic exception at all costs. If an application experiences an unexpected error and there isn’t any way to recover from it automatically, the user requires as much information as possible about the error in order to fix it. This means that the application should diagnose the problem as much as possible. Don’t tell the user that the application simply has to end—there is never a good reason to include this sort of message. Instead, tell the user that the application can’t locate a required resource and specify the resource in as much detail as possible. If possible, let the user fix the resource access problem and then retry access before you simply let the application die an ignoble death. Remember this! Any exception that your application displays means that you’ve failed as a developer to locate and repair the errors, so exceptions should be reserved for truly exceptional conditions.

Not everyone agrees with my approach to error trapping, but I have yet to hear a convincing argument to provide unreliable, non-specific error trapping in an application. Poor error trapping always translates into increased user dissatisfaction, increased support costs, and a reduction in profitability. Let me know your thoughts on the issue of creating a sensible error trapping strategy at [email protected].

An Update on the RunAs Command


This is an update of a post that originally appeared on 
May 14, 2014.

Recently I wrote the Simulating Users with the RunAs Command post that describes how to use the RunAs command to perform tasks that the user’s account can’t normally perform. (The basics of using the RunAs command appear in Windows Command-Line Administration Instant Reference.) A number of you have written to tell me that there is a problem with using the RunAs command with built-in commands—those that appear as part of CMD.EXE. For example, when you try the following command:

RunAs /User:Administrator "md \Temp"

you are asked for the Administrator password as normal. After you supply the password, you get two error messages:

RUNAS ERROR: Unable to run - md \Temp
2: The system cannot find the file specified.

In fact, you find that built-in commands as a whole won’t work as anticipated. One way to overcome this problem is to place the commands in a batch file and then run the batch file as an administrator. This solution works fine when you plan to execute the command regularly. However, it’s not optimal when you plan to execute the command just once or twice. In this case, you must execute a copy of the command processor and use it to execute the command as shown here:

RunAs /User:Administrator "cmd /c \"md \Temp""

This command looks pretty convoluted, but it’s straightforward if you take it apart a little at a time. At the heart of everything is the md \Temp part of the command. In order to make this a separate command, you must enclose it in double quotes. Remember to escape the double quote that appears within the command string by using a backslash (as in \").

To execute the command processor, you simply type cmd. However, you want the command processor to start, execute the command, and then terminate, so you also add the /c command line switch. The command processor string is also enclosed within double quotes to make it appear as a single command to RunAs.

Make sure you use forward slashes and backslashes as needed. Using the wrong slash will make the command fail.

The RunAs command can now proceed as you normally use it. In this case, the command only includes the username. You can also include the password, when necessary. Let me know if you find this workaround helpful at [email protected].

Accessing a Global String

This is an update of a post that originally appeared on June 30, 2011.

Some examples work well across multiple editions of my book with slight modifications, so if you have the third edition of my book and this code looks familiar, it probably is with small changes. The example in question in this case now appears in Book I Chapter 7 of C++ All-In-One for Dummies, 4th Edition. The example shown in Listings 7-6, 7-7, and 7-8 describes how to declare a global int variable using extern and one reader wanted to extend this example to the string type. The reader had tried several times, but kept getting the following error message (in fact, you can find this same error in Code::Blocks 8.02 and 10.05 and the update in this post works with both versions):

error: 'string' does not name a type

I’m assuming that you’ve already read the discussion about this example (be sure you read the entire section from pages 183 to 185). Creating a fix for this problem isn’t hard, but providing some example code will make things easier to understand. The first issue is to include the required support in main.cpp (shown in Listing 7-6). Here’s an updated version that includes an entry for a string variable named CheeseburgerType.

#include <iostream>
#include <string>
#include "sharealike.h"
 
using namespace std;
 
int main()
{
  DoubleCheeseburgers = 20;
  CheeseburgerType = "Deluxe";
  EatAtJoes();
  return 0;
}

As you can see, you must provide #include <string> and then set CheeseburgerType to a value, which is "Deluxe" in this case. Otherwise, the example works precisely the same as before.

Let’s look at sharealike.h next (Listing 7-7). The following code changes are essential or the example will never work.

#ifndef SHAREALIKE_H_INCLUDED
#define SHAREALIKE_H_INCLUDED
 
using namespace std;
 
extern int DoubleCheeseburgers;
extern string CheeseburgerType;
void EatAtJoes();
 
#endif // SHAREALIKE_H_INCLUDED

Notice the inclusion of using namespace std;. The example will fail to compile without this statement added unless you specify the namespace as part of the type declaration. Once you define this addition, you can create the extern string CheeseburgerType; declaration. Of course, if string were part of another namespace, you’d use that namespace instead.

The final part of the puzzle is to create the required implementation. This part appears in sharealike.cpp (Listing 7-8). Here’s the final piece of the example:

#include <iostream>
#include <string>
#include "sharealike.h"
 
using namespace std;
 
int DoubleCheeseburgers;
string CheeseburgerType;
 
void EatAtJoes() {
  cout << "How many cheeseburgers today?" << endl;
  cout << DoubleCheeseburgers << " " << CheeseburgerType << endl;
 }

As with main.cpp, you must add the appropriate #include. In addition, this part of the example updates EatAtJoes() to include CheeseburgerType in the output. When you run this example, you’ll now see a cheeseburger type in the output as shown here:

The output of the updated version of GlobalVariable shows the kind of cheeseburger.
The output of GlobalVariable now shows the kind of cheeseburger.

Are there any questions on this extension? Please let me know at [email protected]. You can download the updated version of the code as GlobalVariable2 here:

Locating the Machine Learning for Dummies, 2nd Edition Source Code

A reader recently wrote to say that the source code for Machine Learning for Dummies, 2nd Edition on GitHub is incomplete. Actually, that wasn’t originally one of the download sources for the book’s code and we had used that site for an intermediary code location, so it wasn’t complete. The GitHub site code is complete now, but we’d still prefer that you download the code from one of the two sites listed in the book: On my website at http://www.johnmuellerbooks.com/source-code/ (just click the book’s link) or from the Wiley site at https://www.wiley.com/en-us/Machine+Learning+For+Dummies%2C+2nd+Edition-p-9781119724056 (just click the Downloads link, then the download link next to the source code you want). The two preferred sites offer the source code in either Python or R form in case you don’t want to download both.

When you get the downloadable source, make sure you remove it from the archive as described in the UnZIPping the Downloadable Source post. Using the downloadable source helps you avoid some of the issues described in the Verifying Your Hand Typed Code post. Please let me know whenever you encounter problems with the downloadable source for a book at [email protected].

Simulating Users with the RunAs Command

This is an update of a post that originally appeared on April 26, 2011.

One of the problems with writing applications, administering any network, or understanding system issues is to ensure that you see things from the user’s perspective. It doesn’t matter what your forte might be (programmer, administrator, DBA, manager, or the like), getting the user view of things is essential or your efforts are doomed to failure. Of course, this means seeing what the user sees. Anyone can run an application at the administrator level with good success, but the user level is another story because the user might not have access to resources or rights to perform tasks correctly.

Most knowledgeable users know that you can simulate an administrator by right clicking the application and choosing Run As Administrator from the context menu. In fact, if you Shift+Right Click the application, you’ll see an entry for Run As A Different User on the context menu that allows you to start the application as any user on the system. However, the GUI has limitations, including an inability to use this approach for batch testing of an application. In addition, this approach uses the RunAs command defaults, such as loading the user’s profile, which could cause the application to react differently than it does on the user’s system because it can’t find the resources it needs on your system.

A more practical approach is to use the RunAs command directly to get the job done. You can see some basic coverage of this command on page 480 of Windows Command-Line Administration Instant Reference. To gain a basic appreciation of how the user views things, simply type RunAs /User:UserName Command and press Enter (where UserName is the user’s fully qualified logon name including domain and Command is the command you wish to test). For example, if you want to see how Notepad works for user John, you’d type RunAs /User:John Notepad and press Enter. At this point, the RunAs command will ask for the user’s password. You’ll need to ask the user to enter it for you, but at that point, you can work with the application precisely as the user works with it.

Note that I highly recommend that you create test user accounts with the rights that real users have, rather than use a real user’s account for testing. Otherwise, if something goes wrong (and it usually does), you’ve damaged a real user’s account. Make sure you follow all of the usual policies to create this test user account and that you have as many test user accounts as needed to meet your organization’s needs.

Of course, many commands require that you provide command line arguments. In order to use command line arguments, you must enclose the entire command in double quotes. For example, if you want to open a file named Output.TXT located in the C:\MyDocs folder using Notepad and see it in precisely the same way that the user sees it, you’d type RunAs /User:John “Notepad C:\MyDocs\Output.TXT” and press Enter.

In some cases, you need to test the application using the users credentials, but find that the user’s profile gets in the way. The user’s system probably isn’t set up the same as your system, so you need your profile so that the system can find things on your machine and not on the user’s machine. In this case, you add the /NoProfile command line switch to use your profile. It’s a good idea to try the command with the user’s profile first, just to get things as close as you can to what the user sees. The default is to load the user’s profile, so you don’t have to do anything special to obtain this effect.

An entire group of users might experience a problem with an application. In this case, you don’t necessarily want to test with a particular user’s account, but with a specific trust level. You can see the trust levels setup on your system by typing RunAs /ShowTrustLevels and pressing Enter. To run an application using a trust level, use the /TrustLevel command line switch. For example, to open Output.TXT as a basic user, you’d type RunAs /TrustLevel:0x20000 “Notepad C:\MyDocs\Output.TXT” and press Enter. The basic trust levels are:

  • 0x40000 – System
  • 0x30000 – Administrator
  • 0x20000 – Basic User
  • 0x10000 – Untrusted User

Many people are experiencing problems using the /ShowTrustLevels and /TrustLevel command line switches with newer versions of Windows. The consensus seems to be that Microsoft has changed things with the introduction of UAC and that you’ll need to work with the new Elevation Power Toys to get the job done. You may also want to review the article PowerToys running with administrator permissions because it provides some insights that may be helpful in this case as well. I’d be interested in hearing about people’s experiences. Contact me at [email protected].

Checking Your Compiler in Code::Blocks

This is an update of a post that originally appeared on April 6, 2011.

Compilers are important because they turn your human-readable source code into executable code that the computer understands. Selecting the right compiler is essential if you want to obtain the best results from your application. Some readers have asked, “Just how do you select a compiler when working with C++ All-In-One for Dummies, 4th Edition?” The book assumes that you’re using the GNU GCC Compiler setting and there isn’t any guarantee another compiler will work with the book’s source code. Use these steps to check your compiler setting.

  1. Open the Code::Blocks application.
  2. Choose Settings | Compiler and you see the Global Compiler Settings dialog box shown here:
    A display of the Global Compiler Settings dialog box in Code::Blocks.
  3. Choose GNU GCC Compiler in the Selected Compiler field as shown in the figure.
  4. Click OK.

You should be ready to work with the book’s code at this point. Let me know if you have any problems choosing the right compiler at [email protected].

Considering the Four Levels of Intelligence Management

One of the reasons that Luca and I wrote Artificial Intelligence for Dummies, 2nd Edition was to dispel some of the myths and hype surrounding machine-based intelligence. If anything, the amount of ill-conceived and blatantly false information surrounding AI has only increased since then. So now we have articles like Microsoft’s Bing wants to unleash ‘destruction’ on the internet out there that espouse ideas that can’t work at all because AIs feel nothing. Of course, there is the other end of the spectrum in articles like David Guetta says the future of music is in AI, which also can’t work because computers aren’t creative. A third kind of article starts to bring some reality back into the picture, such as Are you a robot? Sci-fi magazine stops accepting submissions after it found more than 500 stories received from contributors were AI-generated. All of this is interesting for me to read about because I want to see how people react to a technology that I know is simply a technology and nothing more. Anthropomorphizing computers is a truly horrible idea because it leads to the thoughts described in The Risk of a New AI Winter. Another AI winter would be a loss for everyone because AI really is a great tool.

As part Python for Data Science for Dummies and Machine Learning for Dummies, 2nd Edition Luca and I considered issues like the seven kinds of intelligence and how an AI can only partially express most of them. We even talked about how the five mistruths in data can cause issues such as skewed or even false results in machine learning output. In  Machine Learning Security Principles I point out the manifest ways in which humans can use superior intelligence to easily thwart an AI. Still, people seem to refuse to believe that an AI is the product of clever human programmers, a whole lot of data, and methods of managing algorithms. Yes, it’s all about the math.

This post goes to the next step. During my readings of various texts, especially those of a psychological and medical variety, I’ve come to understand that humans embrace four levels of intelligence management. We don’t actually learn in a single step as might be thought by many people, we learn in four steps with each step providing new insights and capabilities. Consider these learning management steps:

  1. Knowledge: A person learns about a new kind of intelligence. That intelligence can affect them physically, emotionally, mentally, or some combination of the three. However, simply knowing about something doesn’t make it useful. An AI can accommodate this level (and even excel at it) because it has a dataset that is simply packed with knowledge. However, the AI only sees numbers, bits, values, and nothing more. There is no comprehension as is the case with humans. Think of knowledge as the what of intelligence.
  2. Skill: After working with new knowledge for some period of time, a human will build a skill in using that knowledge to perform tasks. In fact, very often this is the highest level that a human will achieve with a given bit of knowledge, which I think is the source of confusion for some people with regard to AIs. Training an AI model, that is, assigning weights to a neural network created of algorithms, gives an AI an appearance of skill. However, the AI isn’t actually skilled, it can’t accommodate variations as a human will. What the AI is doing is following the parameters of the algorithm used to create its model. This is the highest step that any AI can achieve. Think of skill as the how of intelligence.
  3. Understanding: As a human develops a skill and uses the skill to perform tasks regularly, new insights develop and the person begins to understand the intelligence at a deeper level, making it possible for a person to use the intelligence in new ways to perform new tasks. A computer is unable to understand anything because it lacks self-awareness, which is a requirement for understanding anything at all. Think of understanding as the why of intelligence.
  4. Wisdom: Simply understanding an intelligence is often not enough to ensure the use of that intelligence in a correct manner. When a person makes enough mistakes in using an intelligence, wisdom in its use begins to take shape. Computers have no moral or ethical ability—they lack any sort of common sense. This is why you keep seeing articles about AIs that are seemingly running amok, the AI has no concept whatsoever of what it is doing or why. All that the AI is doing is crunching numbers. Think of wisdom as the when of intelligence.

It’s critical that society begin to see AIs for what they are, exceptionally useful tools that can be used to perform certain tasks that require only knowledge and a modicum of skill and to augment a human when some level of intelligence management above these levels is required. Otherwise, we’ll eventually get engulfed in another AI winter that thwarts development of further AI capabilities that could help people do things like go to Mars, mine minerals in an environmentally friendly way in space, cure diseases, and create new thoughts that have never seen the light of day before. What are your thoughts on intelligence management? Let me know at [email protected].