Antivirus and Application Compilation

Sometimes applications don’t get along, especially when one application is designed to create new content at a low level and the other is designed to prevent low level access to a system. Such is the case with compilers and antivirus applications in some cases. I haven’t been able to reproduce this behavior myself, but enough readers have told me about it that I feel I really do need to address it in a post. There are situations where you’re working with source code from one of my books, compile it, and then have your antivirus application complain that the code is infected with something (even though you know it isn’t). Sometimes the antivirus program will go so far as to simply delete the application you just compiled (or place it in a virus vault).

The solution to the problem can take a number of forms. If your antivirus application provides some means of creating exceptions for specific applications, the easiest way to overcome the problem is to create such an exception. You’ll need to read the documentation for your antivirus application to determine whether such a feature exists.

In some cases, the compiler or its associated Integrated Development Environment (IDE) simply don’t follow all the rules required to work safely in protected directories, such as the C:\Program Files directory on a Windows system. This particular issue has caused readers enough woe that my newer books suggest installing the compiler and its IDE in a directory the reader owns. For example, I now ask readers to install Code::Blocks in the C:\CodeBlocks directory on Windows systems because installing it elsewhere has caused some people problems.

Unfortunately, creating exceptions and installing the application in a friendly directory only go so far in fixing the problem. A few antivirus applications are so intent on protecting you from yourself that nothing you do will prevent the behavior. When this happens, you still have a few options. The easiest solution is to turn the antivirus program off just long enough to compile and test the application. Of course, this is also the most dangerous solution because it could leave your system open to attack.

A safer, albeit less palatable solution, is to try a different IDE and compiler. Antivirus programs seem a little picky about which applications they view as a threat. Code::Blocks may cause the antivirus program to react, but Eclipse or Visual Studio might not. Unfortunately, using this solution means that steps in the book may not work precisely as written.

For some developers, the only logical solution is to get a different antivirus application. I’ve personally had really good success with AVG Antivirus. However, you might find that this product doesn’t work for you for whatever reason. Perhaps it interacts badly with some other application on your system or simply doesn’t offer all the features you want.

My goal is to ensure you can use the examples in my books without jumping through a lot of hoops. When you encounter problems that are beyond my control, such as an ornery antivirus application, I’ll still try to offer some suggestions. In this case, the solution truly is out of my control but you can try the techniques offered in this post. Let me know if you find other solutions to the problem at John@JohnMuellerBooks.com.