Making Algorithms Useful

I’m currently engaged writing Machine Learning for Dummies. The book is interesting because it turns math into something more than a way to calculate. Machine learning is about having inputs and a desired result, and then asking the machine to create an algorithm that will produce the desired result from the inputs. It’s about generalization. You know the specific inputs and the specific results, but you want an algorithm that will provide similar results given similar inputs for any set of random inputs. This is more than just math. In fact, there are five schools of thought (tribes) regarding machine learning algorithms that Luca and I introduce you to in Machine Learning for Dummies:

  • Symbolists: The origin of this tribe is in logic and philosophy. This group relies on inverse deduction to solve problems.
  • Connectionists: The origin of this tribe is in neuroscience. This group relies on backpropagation to solve problems.
  • Evolutionaries: The origin of this tribe is in evolutionary biology. This group relies on genetic programming to solve problems.
  • Bayesians: This origin of this tribe is in statistics. This group relies on probabilistic inference to solve problems.
  • Analogizers: The origin of this tribe is in psychology. This group relies on kernel machines to solve problems.

Of course, the problem with any technology is making it useful. I’m not talking about useful in a theoretical sense, but useful in a way that affects everyone. In other words, you must create a need for the technology so that people will continue to fund it. Machine learning is already part of many of the things you do online. For example, when you go to Amazon and buy a product, then Amazon makes suggestions on products that you might want to add to your cart, you’re seeing the result of machine learning. Part of the content for the chapters of our book is devoted to pointing out these real world uses for machine learning.

Some uses are almost, but not quite ready for prime time. One of these uses is the likes of Siri and other AIs that people talk with. The more you interact with them, the better they know you and the better they respond to your needs. The algorithms that these machine learning systems create get better and better as the database of your specific input grows. The algorithms are tuned to you specifically, so the experience one person has is different from an experience another person will have, even if the two people ask the same question. I recently read about one such system under development, Nara. What makes Nara interesting is that she seems more generalized than other forms of AI currently out there and can therefore perform more tasks. Nara is from the Connectionists and attempts to mimic the human mind. She’s all about making appropriate matches—everything from your next dinner to your next date. Reading about Nara helps you understand machine learning just a little better, at least, from the Connectionist perspective.

Machine learning is a big mystery to many people today. Given that I’m still writing this book, it would be interesting to hear your questions about machine learning. After all, I’d like to tune the content of my book to meet the most needs that I can. I’ve written a few posts about this book already and you can see them in the Machine Learning for Dummies category. After reading the posts, please let me know your thoughts on machine learning and AI. Where do you see it headed? What confuses you about it? Talk to me at John@JohnMuellerBooks.com.

 

Author: John

John Mueller is a freelance author and technical editor. He has writing in his blood, having produced 99 books and over 600 articles to date. The topics range from networking to artificial intelligence and from database management to heads-down programming. Some of his current books include a Web security book, discussions of how to manage big data using data science, a Windows command -line reference, and a book that shows how to build your own custom PC. His technical editing skills have helped over more than 67 authors refine the content of their manuscripts. John has provided technical editing services to both Data Based Advisor and Coast Compute magazines. He has also contributed articles to magazines such as Software Quality Connection, DevSource, InformIT, SQL Server Professional, Visual C++ Developer, Hard Core Visual Basic, asp.netPRO, Software Test and Performance, and Visual Basic Developer. Be sure to read John’s blog at http://blog.johnmuellerbooks.com/.

When John isn’t working at the computer, you can find him outside in the garden, cutting wood, or generally enjoying nature. John also likes making wine and knitting. When not occupied with anything else, he makes glycerin soap and candles, which comes in handy for gift baskets. You can reach John on the Internet at John@JohnMuellerBooks.com. John is also setting up a website at http://www.johnmuellerbooks.com/. Feel free to take a look and make suggestions on how he can improve it.